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x ABSTRACT
|

We discuss integrable Hamiltonian systems the form;
=
i
Hix,y) =5 ) vy, +) Vix-x)+ ) Wx),
2 L ) i
i=1 1<i<j<n
(V(x), W(x)) of the form;
Z : 2 1 X2 X
T =, -5 x ), or (B) ((E cothE) y ae ) ,

b 2 & ’

\ .

"&and also systems whose Hamiltonians are integrals of these systems,\(JThe
s XY

derivation ofegr results is made possible by the fact that the equations of

/

T

! motion can be interpreted as deformation equations for matrix functions whose
spectrum remains fixed as the system evolves in time, leading both to inte-

; grals of the motion, and a description of the solution. In particular we show

that for case (A), a purely imaginary, all solutions/oj the flow are periodic. In

addition, for all these systems, symmetric polynomials in the xi(t) turn out

to be rational in exponentials, or polynomials in at most n exponentials. We

then study the scattering maps associated with these systems for a > 0,

obtaining striking properties for these maps and interrelations between the

systems.
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SOME FINITE DIMENSIONAL INTEGRABLE SYSTEMS
AND THEIR SCATTERING BEHAVIOR™

Mark Adler

1. Introduction.

We consider Hamiltonian systems of n particles on a line interacting
with each other where the Hamiltonian is of the form:

- .
(1.1) H ) =5 ), ¥, + 2, Vix-x)+ Y Wix)
a § i 1

= I<I<j<n i=]

The examples of such pairs of potentials (V(x), W(xX)) to be considered are:

2
-2 a2
(A) (s ?X )
(8) (G coth 21, @ &™)

Calogero, Marchioro“] and Sutherland[z] have studied some of these
potentials in the context of guantum mechanics, and their work suggested
looking at the classical systems. For the case 4 =0 ;
J. Moser“] has shown that both of the above examples are integrable
systems, i.e., possess n integrals whose associated Hamiltonian flows
commute, and in addition the integrals are rational in (xi, yi), (exi, yi)
respectively. The method he used was based on the isospectral technique
of Lax[4], first applied by H. Flaschka[sl to the Toda lattice. This consists
in the construction of a matrix function of (X, y) whose spectrum remains
fixed in t if x = x(t), y = y(t) are solutions of the above Hamiltonian

system. We then take the eigenvalues of the matrix to be the desired integrals,

and study systems whose Hamiltonians are functions of these integrals.

Sponsored by
1) the United States Army under Contract No. DAAG29-75-C-0024
2) the National Science Foundation under Grant No. MCS75-17385
3) the Office of Naval Research under Contract No. N00014-76-C-03-01.




We extend this method to some new systems. Moreover, we con-
struct a second matrix function of (x,y,t) whose spectrum is invariant
under the Hamiltonian flow, which allows us to describe the solutions more
or less explicitly.

In this way we show for solutions x = x(t) of the above Hamiltonian
system, in case (A), a # 0, that the symmetric homocgeneous polynomials

+ot ok K
in xi(t) of degree v are polynomials of degree v in e [6] , Wwhich
implies that all solutions of the system, for o purely imaginary, are periodic.
Furthermore, for a class of systems whose Hamiltonians are integrals of the
above system, the symmetric polynomials of xi(t) are polynomials of at
most n exponentials e)\it . The same result is true for system (B), for
a =0, if we replace xi by exi, as first proven by Olshanetzky and

%k
Perelomov and moreover for systems which we will construct such that

’

their Hamiltonians are integrals of (B), @ = 0. While for (B), o # 0, we

find that the symmetric polynomials in exi are rational in n exponentials

ALt
e

t
l,...,e)‘n ?

It is then easy to discuss the scattering behavior of the above systems
quite explicitly in case the particles ultimately disperse, as in the case

@ >0, and to construct scattering maps. For instance in case (A), @ >0,

the solutions behave asymptotically like:

1 b
(1. 2) X, (t) = — {q* e* %, 4 lp*e:Fat +
ST “

O(e-Zlat,)} :
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T

+
for t - o, and for all k, ¢ T

* <q if xk(O) < x (0). We include

k+1

L
1
—

the artificial factors 2~ 2, « Z-‘", for a later purpose, to make (x,y) - (p,d)

a canonical transformation. On the other hand for case (B), o >0, the solutions

behave asymptotically like:
+ -1 :
(1. 3) Xk(t) = & )\kt + (3; @ (S ot et to0 S

where L. < X< oo sy <) eifiaeif0) < for all i.
154 e PR

The scattering maps which we construct are canonical, given by poly-
nomial relations, and lead to surprising algebraic transformations between the

above systems (1.1). Moreover, they are found to agree with their own inverse,

i. e., they are involutions. For instance in formula (l. 3) we find

oo e 2
(1. 4) P t By = 2 log(a N -

It is surprising that the scattering map for the system (A), with o >0,
which relates data at t = -» with data at t = + ©® 1is precisely equal to the
scattering map for the same system (A), with « = 0, but which relates data
at t = 0 with data at t = » . Another interesting fact is that the scattering
map for the system (A), with a > 0, which relates data at t = 0 with data
at t =o, transforms the Hamiltonian of that system into an integral of the

system (B) with « = 0, after a trivial change of coordinates.

In Section IV we show that Hamiltonian systems near by to system (1. 1),
case (A) with a purely imaginary, have at least n geometrically distinct
orbits on each energy surface. While such results are easily derived in case

the periodic solutions of the unperturbed system are isolated, they are quite

=3




delicate for manifolds of periodic orbits, which we encounter. This result
follows directly from the perturbation theory of A. Weinstein [8].

I wish to thank Professor J. Moser for his many suggestions in both
formulation and technical specifics, and last but not least for his enthusiasm

and encouragement.

Part of this research was done while at the Courant Institute of
Mathematical Sciences [14], N.Y.U., with the Office of Naval Research,
Contract No. N00014-76-C-03-01.

A I am indebted to F. Calogero for communicating to me the then un-
published results of Olshanetzky and Perelomov at the above****mentioned con-
ference. Their work, which was done independently has meanwhile been
published in [11]. Part of their results overlap with some results presented in
Sections 2-4 of this paper. The proofs presented are those of the unpublished

preprint [12], which was handed out at the above mentioned conference of

January 1976, in conjunction with a brief research announcement.

#*%% This result was motivated by a recent note by Sawada and Kotera. See [9].

#%%% Some of this work was announced and presented at the conference on
Theory and Application of Solitons, held January 1976 in Tuscon, Arizona, and

will appear in the proceedings of this conference [13].




2. Integrability.
To construct the integrals of Ha(x, y) defined by (l.1), Case (4),
we use the matrices of J. Moser's system, Y = Y(x,y), B = B(x), where

(%, ¥) e B = ({7 ¢ Rznlxi<x for =12

141 32, +20.,0-1}, @ defined once

and for all.

-1
ij = [L(X, Y)]jk = ajk yj i 1(1-6]}() (xj'xk)

-2 -2
= [9) - = =
By if i o 06X )7+ (L-6) (=% ) e
S#j
and the diagonal matrices X = diag(xl, Xoyoony xn), D(y) = diag(yl, LAYERE yn) -

For future use, we observe the crucial fact that L(x,y) has n distinct real

eigenvalues. (See [3]).

We observe the commutator relation [X,Y]= C, Cjk = i(l - 6jk)’ noting
that iC is the identity operator on the subspace in Rn specified by
n
2 k=0,
f=1 ) n
Define D _, = Z (G. 8 -G_9 ) to be the Hamiltonian vector field
G Y, X X. Y
i=1 i i ) B |
acting on functions of (x,y), i.e. if %, = Gy - i’i =-G, ,i=1,...,n,
i i
then EF—‘%’—X)— = DGF . As an operator on matrices, DG acts componentwise.

Let 6 be the operator acting on matrix functions of (x,y), and t, defined
by

6(2) = (DH Z -[B,Z)) + atz

a
Note that & is a derivation, i.e., it satisfies the sum and product rule of

differentiation, respecting order, for it is the sum of three derivations. We

-5«




observe that in the case where t doesn't occur explicitly in Z, then

62 = DH Z - [B,Z]. We also note for future reference, that I shall stand

(63
for the n X n identity matrix.

9H oH
. a . a e
Theorem 1. If x,y obey xi_-ay—i, yi‘_gx—i-’ =]
matrices M¥ - (Y £ aX) e;:at satisfy the isospectral differential equation

n, then the

gyt ey )

(2.1 sME = 0

’

and consequently so does the time independent matrix

B M M =22 ¥+ aX) (Y ~aX)

N

1
2

Proof. We establish the following partial differential equation.

(2.2) a) oX =Y, b) 5Y = a®X

Note if we neglect the commutators, these equations become scalar harmonic
oscillator equations. Since x =y, we have X = D(y), and (2.2)a is just

D(y) = Y +[B, X], i.e., Y=D(y)+[X,B], and since

[X, B]jk = (xj - xk) Bjk = (i = 6jk) (xj e

the definition of Y yields the result. To prove (2.2)b, we note

. 2 2
[trYZ—a trX]:H0+P ,

(5] L

B =
(¢4

and so D._ Y=D_.. Y+D_Y, butin[3]itis computed that D__ Y = [B, Y]
H H P H
a 0 0
(a straightforward computation), and since

2
DPY = DP(D(y)) = a X, we have

-6-




2
D, Y=D,_. Y+D_ Y=[B,Y]+a X, and (2.2)b is proven.
Ha HO P

Now (2. 2) immediately implies

O(Y £ aX) = £ a(Y & aX) ,

hence
8M* = (5(Y £ X)) eTet & (Y2 aX)(5(eT Py
=+ oY+ aX)e T 4 (Y £ aX)(F ue;ut) =0 ,
+
and thus 5M™ =0

That E satisfies 6E = 0 is an immediate consequence of & being a deriva-

tion.

Remark 1.

We not that the operator equation 6D = 0, or equivalently
U'l(éD) U=0= (;j—t(U-lDU), where U = BU, is equivalent to
U(t)-lD(t)U(t) = U_l(O)D(O) U (0), provided U(t), U(t‘;-l exists. We say L undergoes
an isospectral deformation in time. Thus the constants of the derivation §, i.e., the
algebra which forms the kernel of the operator 6, are nothing but the iso-

spectral matrices which evolve through their similarity class via the infinitesimal

generator B . Their eigenvalues and all functions of them remain constant in

time.
Remark 2.
In our case B + B* = 0, so apriori U(t) exists for all finite time, and
%
UU =1 if it holds at some time tO . If in addition U(t) converges for

t -», we may set the value of U at t=% tobe I, the n Xn identity

e




20
matrix. Thus U(t) =1 -f B(x(s)) U(s)ds, and we now redefine U(x,y) as
t 0
the solution of the integral equation U(x,y) =1 - f B(x(s)) U(x(s), y(s))ds ,
0
as a function of x = x(0), y = y(0) on £, rather than along the orbit. In

other words we construct U(0) via the above integral equation, thus directly
exhibiting its dependence on 2. Then U(x,y) is a solution of the partial

differential equation DH U=BU.

a
Thus for every point (x,y) of @ we have U(x,y), B(x), and that

U_l(x,y) L(x,y) U(x,y) is constant along orbits and equals lim L(x(t), y(t)) .
t—
If, as in Case (A), a =0, lim L(x(t), y(t)) is a diagonal matrix, then the
t—+

columns of U(x,y) are the eigenvectors of L(X,y) .

If in some way we can find a normalization of the eigenvectors, and
hence of U(x,y), we may dispense with its definition using the partial
differential equation in (x,y) space. For instance, if B satisfies an
equation of the form CB = 0, with C a constant matrix with no column

identically zero, then automatically CU = C is the desired normalization.

d(CU) g

For It

DH(CU) = CBU = 0, but lim U(x(t), y(t)) = I by definition,

t— o0
and CI=C, hence CU(x,y) = C for all (x,y), i.e., U(x,y) is a member
of the Lie subgroup of the unitary group specified by CU = C . This symmetry

coupled with the fact that U diagonalizes L, algebraically defines the

matrix function U if the eigenvalues are distinct. The above happy situation

of simple eigenvalues occurs for all cases we will consider, and C will be

of the form (C i, L shall have simple spectrum, and so we shall always

ki)

be able to define our U by algebraic processes.

wil




Remark 3.

We note that E does not contain time explicitly and so Ij([)) = iR
j=1,...,n are n rational integrals of the motion.

Letting z = (x,Yy), we define

¢ 9(f, 9)
l z =
1f) g}z = (]szy V:"g)—j.:ll a(xi’ yi)

’

i.e., the Poisson bracket of f, g, computed in z = (X,y) coordinates,

b

Z2n ;
where ( , ) is the ordinary scalar dot product in R VZ the gradient
: 2n , . , n
operator in R equipped with coordinates z = (x,y), X,ye R, and J the
2n X 2n constant matrix [?’-I)J, with I the n Xn identity matrix. Note
’

Dgf = {f,g} by the previous definition of Dg .

Theorem 2.
The Ij(E) are in involution, i.e., {Ij, Ik} S A - ST B

The Ij are algebraically independent, i.e., the system HO in Case (A) is

classically integrable.
To prove the theorem, we use the asymptotic description (a > 0) of

the orbits. Clearly it suffices to prove that ¢jk = {1,, Ik} vanishes in some

j

neighborhood, since ¢, (x,y) are rational functions of their arguments.

ik

Also it suffices to consider the case of o« >0, as a enters rationally into

¢jk . The algebraic independence of the Ij(x,y) is easily seen upon letting

x“1 - xi be large for all i . For a > 0 we use the asymptotic behavior of

the solution, letting a =1 for simplicity.




Lemma 2. l.
PO e R R ) e (R D e e P ) varying in some appropriate
1 2 n Jaen? n

2n
neighborhood N of R there exists solutions of our system for t > 0,

’

satisfying:
1 t -t 2. 5t
Xt B9 = ——{q. e +p e ) +Ofe )
j NE j j
(2. 3) for t =+ 4+
1 t i -2. 5t i
YW pq=—1(g, e -p.e )+Ofe )
] N j ]

where the above expression may be differentiated with respect to (p,q) and
still remains valid. Moreover, the map T: (p,q) = (x(0), y(0)) is canonical.

We sketch the proof. For uj(t, p, a) = xj(t, p, q) - —l_— (qj et + pj e't) #

N2
we have the following integral equation
o0
2.4 u, = K(s-t) V,[u, s]ds
(2. 4) J ft (s-1) V,[u, s]ds
where K(t) = sinht ,
oH
0 1 IE -t
Vj[u,s]: -&—(u(s, Dy Gl ¥ —==(g e "+ pe gy g
j N2

+
u(t, p, @ R' XN=W—R",

2
where R+ = {sl s ZO}, and N is the neighborhood in R - to be determined.
For ¢ > 0, we apply the contraction principle to the set 3 = 3(¢) of vector

C2 functions u =u (t, p, ¢) of W, with the restriction that sup(|u| +
w

e flull < ¢ . We then pick Me sufficiently large depending on

ou
|'5't-|)e
o

e fixa qo having the property minluo- 0 N

=) i<j
N = {(q, D)| Ipl + |q -qo| < Mc } . Then one verifies in a standard manner

5° Me’ q:- < qo+ and define

i+l’

that K[B] C [B], and ||K[ul] - K[UZ]” <1/2 Nul-u.Z | for up, u, e B .

-10-
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Hence via the contraction principle, u = K[u] possesses a unique solution

9 9 ¢ 2
u_. If we define the vector v = (u, il : —E), "v" = sup(lvl + 'a_v‘) e o
fe) aq’ 9p W ot
)
then a similar argument with this new norm will yield the existence of -a% :

ou - : . ;
p’ their derivatives with respect to time, and the asymptotic estimates

on these quantities stated in (2. 3).
Thus a solution to (2. 3) has been constructed, and only the last

statement of the Lemma 2.1 remains to be proven. We now have the map

e where

T () P

t>0 N
t' 'p y(t,q,p) 120 (@GP e

By the statement of the first part of the lemma, for t sufficiently large,

L5 is C' invertible, on perhaps a smaller neighborhood, and

d(X(t, a4, p), Y(t,a,p)) _ 1 [:11] -2. 5t
(2.5) = — +O(e )
B(Q) p) \,2 I"

Now the map ¢t: (x(0), y(0)) -~ (x(t), y(t)) is canonical and Lence C'

invertible, thus To = ¢-t T is C' invertible in N . If we denote the

Jacobian matrix of these maps by j, we have

-t
a) j(TO) I ) K,
4 -2, 5t :
b) j (Tt)I J(r,) =-J+O(e ), as a consequence of (2. 5),
c) JT(¢’t)I 1(¢t) = J, since ¢t is a canonical map,
[t
e %

d) liehll<c

-. 5|t
As a consegquence of a)-d) we conclude j(TO)T] j(ro) = -] + O(e l |) for

ella




all t. Hence j(-ro)T ] j(-ro) = -], and thus 7 = TO is canonical, and

the lemma is proven. We observe a map preserves the form of the previously
defined Poisson bracket, if and only if its Jacobian at every point belongs

to the symplectic group Sp(2n, R) of 2n X2n matrices satisfying ATIA =7,
which is easily verified using the definition of {, } . More generally we
consider a transformation whose Jacobian A satisfies ATIA = uJ, with a

constant up # 0, and call it a canonical transformation with multiplier wu .

Proof of Theorem 2.

So far we have proven the map (x(0), y(0)) = (g, p) is canonical, but
with multiplier -1, i.e. {, }z = =f; }r’ r=(q,p) . We define the map

s (9, P) = (€,7m) by

.6 = =
(2. 6) gi log A My 9GP s

in the domain 0< ql S S qn . This map is clearly canonical with multi-
plier -1, and hence °T-1: T(N) = y(N) is canonical with multiplier 1 .

Now we recall that (« =1, for simplicity),

s

E==M M ==(Y+X) (Y-X):%(YZ-X2)+IE-[X,Y],

N -

1
2
hence

2 2 ! -2
7 Ekl = 6kl(yk - xk + ?;' (xk - xm) ) +

wl2a




where the prime indicates that undefined terms are to be left out. Using

(2. 3), (2.6), we conclude

(6, -£,)
2

lim E(x(t), y(t)) = E(®) = {8 + i3(1 -5

t— 00

1"

i :
e o }
T M R W R ke’

(2.7)
)

Z(n,6) + 5 C = 2" (n,6), Cpp = 11 - 8

ks ke

where Z(¢, 1), Z+(§, n), are defined by this relation, and we define

2 (n,€) = Zn,§) - 3 C . Now if

n (£ -5}
eyt z 2% 3 ‘8¢
(2. 8) Fin,§) =3tr 2 =3 Y. o b Y coth ——ZJ— ,
i1 i<j

foe., EBln, &)= Ha(g,n) of (1.1) case (B), « =0, then the flow defined by

dn

_j——a—F— _—é— .ai. i-—l n
45 om - Mt dd T EE S o

can also be expressed by an isospectral deformation of the form

2= DFZ = [K,Z], see[3]. Here K has off diagonal elements

] < - Al <2
(2.9) Ky (6) = i[5 sinh (g, -€ )] =iq q/(q -9)  ,

and the sum of the rows, and columns is zero, as was the case for B.
Hence CK = -iK = KC implies [C,K]=0=D_C, and therefore Z (ny ) =
Z(n, £) + ;—C, (and similarly Z (n,£) = Z(n, &) - %—C), satisfies the same
isospectral differential equation as Z . In addition under the flow induced
by F, we find

ais+ﬁi+0(s'l) :
(2.10) 2 for g = +
= a +0(s™ %)

[Taal
—-
i

’

-
—
t

]33«



o

with o, < o,
1

141 and in fact the transformation (£,n) = (B, @) is canonical

by a similar argument as in Lemma 2.1, see [3] for details. However, we
will sketch a proof that the oi's are in involution. By (2.7), (2.10), the
distinct ulf s constitute the simple spectrum of the matrix Z+('q, £) (and
also Z (n,t)), which undergoes an isospectral deformation. Hence
{ai’ a }g, L = (£,n), is a constant of the motion by the Jacobi identity,
which we evaluate at s = @ . But since n e for s =, inthe C!'
sense, 0 = {qi, nj}(, - {ai’aj}g’ and thus 0 = {ai’aj}g' Now since the
matrices E(x,y) and lim E(x(t), y(t))= Z+(n, ¢) and lim Z+(n(s), £(s)) are
t->00 s+

unitarily equivalent via remark 1, while all the maps considered are canonical,

we conclude that the eigenvalues of E(X,y), which are the Appeee, @, are

j

eigenvalues. Thus the proof of Theorem 2 is completed.

in involution, and hence so are the I (E) = 2 a{(, being functions of the
k=1

wide



3. Scattering Theory.

~ To discuss the scattering theory of the system of Section 2, we need

a lemma, which will be a consequence of the following;

oH oH
a . o4

Theorem 3. The solutions of the system 5<i = , V.=~ =,

9y,
i
I = ahey
n v
S xiv(t) = 2 :fsv) e(Zs-v)at
i=1 s=0
(v)

v a natural number, AR rational function of initial data. Hence the

(3. 1)

’

I
xi(t) are explicitly given as algebraic functions of ei & , and initial

data (a # 0) .

Proof. Referring back to the definitions of Section 2, one computes
a-l + at at
(3. 2) X = —Z—(M e -M e ),

since M=t = (Y £ aX) exo{t

th
Raising both sides of Equation (3.2) to the v power, and then

taking the trace, we conclude

(3.1)

n v

oMo AV (Es-Via

), e} et ;
o

(v)

S

(v)

where cs is a sum containing all possible v-fold

v
= itr CS, and C
+ -
products of the noncommuting matrices M, M taken s, and v-s times
+ -
respectively. We recall that the algebra generated by M, M undergoes

an isospectral deformation during the flow, by remark 1 of Section 2. Thus

C(Sv) undergoes an isospectral deformation during the flow, and so

)8




:(V) (t) = c‘qv)(O) is an integral which is a rational function of the initial

>

data. We amplify Lemma 2.1, and now prove a statement about the scattering

of all solutions. Since the particles can't collide we may order them so

that x, < x, for 1=12,...,n=1, andall real t-.
i i+l 8 a
Lemma 3.1. For a > 0, every solution satisfies
1 at -1 -at -2at
(3. 3) xk(t)z——(qke - a pke Y+ Ofe |
N2

as t— +oo, qj < qj“, j=1,2,...,n-1, under the hypothesis of Theorem 3,

with a similar conclusion for t-~» - .

-1

v v
Lg O [‘32— (¥, + aXO)] , where the

Proof. We note in Theorem 3 that c,

subscript indicates evaluation at t = 0. Since Y& oX = L(X,y + aX),
we conclude Y + aX has simple spectrum, for we observed at the beginning
of Section 2 that matrices of the form L(x,y) have simple spectrum. Multi-

avt

plying (2.1) by e =, we find

~atv (V) v -2at -4at
(3.4) ; (xje ) _cv +cv_le + O(e )
with c(‘lv) = (N2) 4 E qjv, where q <a, <...<q are the distinct

) o1
time-independent eigenvalues of —a—'_:— M" . Since STRCTREREFE S
N2 n
distinct and ordered, they are uniquely determined by E xjv, and hence
j=1

(v)

by the expression for cv

, (3.4), and by the distinctness of the xi's

and qi's respectively, we have

lp e-Zat) 4 o(e-4at)

i

-at 1 -
X, e = ———(qi+a

A NZ
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This defines the pi . Upon multiplication of both sides of the latter ex-

t
pression by e , the lemma follows.

Remark 1.
We thus have a map ¢+: Q—+ Q, Q defined in the beginning of
Section 2, given by ¢+(x, y) = (q, p) for a real. We wish to show it is

a bijection of Q. Given qi <q we may form

i+1? pi’

0

l +a'-lp1 Pl +f sinh(s-t) Vi[x(s)]ds, = k2. .. .0,
t

x (t) = — (q.e”

t

and prove the existence of a solution x(t), for t > tO’ with the given
(g, p), by the methods of Lemma 2.1. From the conservation of the energy,
- n
2
Ha(x, y), and the behavior in time of in given by (3.1), we conclude
i=1

n
Z(lxil + Iyif) < C elatl, and therefore x(t) exists and is unique for all

:i:nlm, and in particular at t = 0. Whereas Lemma 3.1 enables us to define
<b+ on , the above discussion shows that ¢;l is well-defined on €, and
hence ¢+ is a bijection of @, and canonical, by the arguments of Lemma 2. 1.
We now exhibit an important feature of 4>+, namely that it is an
algebraic mapping, i.e., it is implicitly given by polynomial relations,
and it is an involution, i.e., ¢+° vb+ = identity. Then we shall discuss a
surprising relation of ¢+ With the scattering map in the case « = 0, and
rational invariants of this map.
The algebraic nature of the map is given by matrix equivalences.
Referring to remark 2 in Section 2, since |B| = O(t-z) along an orbit, B

being the infinitesimal generator of the isospectral flow, we may define the

+
function U(x,y), and by (3.5) and the same remark, in a purely algebraic
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-1
manner, and thus conclude lim M*(t) exists and equals U (X, y)Mt(x, y)U(X, y).
t— o0
Since

F at
ME = (ks alie T,

Fat

* B St » -1
[M™ (z(t), t)]kj i ékj(yj(t) * C'X).(t))" +1i(1-6 (Xk(t) Xj(t)) e ’

K’
and upon using y (t) = ;(i(t)’ (3. 3), we find for t —+co
i

-at e at =
(yi + axi)(t) e N2 a qi, (yi -axi)(t)e -N2 p1 3

e " x, ) - xj(t))'1 %0, e x, - x)() ~NZ (-]

’

j J

and so we have (see remark 2 of Section 2),

(+) U'I(X, y) M+(X, y) U(x,y) = lim m* (z(t),t) =N2 @Q
(3.5) 4 p ok S e
(<) U (x,9) M (x,y) Ux,y) = lim M (z(t),t) = -V2 P 5

t—>o00

where Q = Diag (ql, s ,qn), P = LG, D) «

It is important to notice that both matrices Mt(X, y) are transformed

1
=2

in (3. 5) by the same similarity transformation. Now let La(x, y) = 2 a-lLT(x, y)

= &

A

-1
a L(-%X,y), and let ~ denote spectral equivalence, remembering

X= diag(xl, 515 vy xn), we obtain:

Theorem 4.
The scattering map ¢+ is given by the following symmetric relations
(3. 6a) X~1 (9P +aq)
)
(3. 6b) L (x,y+tax)~Q ,

where both equivalences are effected by the same similarity transformation

«]8a




UT(x,y) . From the symmetry of (3. 6) we see at once ¢>;l = ¢>+, j PG

¢+o¢+:id.

_Pr_o_o_f. Line (3. 6b) is the transpose of equation (3. 5)+, while (3. 6a) is
the transpose of the difference of equations (3. ‘»)i, thus finishing the
proof.
We now study the scattering map ¢ from t - - to t—> +¢0
=9, ° (¢_)'l, where ¢ denotes the map from the initial data (x(0), y(0))

into the scattering data (g, p ) for t= -», defined by
1

at

- -at - at
% pi eOI)+O(e2 ), t—= -©o. To compute ¢, we

1 3

xi e g (Gi e + a
N2

may restrict ourselves to the case o =1. We recall that Ll(x, ¥) =

1
20 LT(x, y), and we conclude from Theorem 4, that ¢+, ¢ are given

implicitly by:

$=0 taa" ot it X=U L(qa, P +q)u"
+1 + TR e -
|

3.7 { (a B
L‘lr(x, y + X) = U+ Q+U; 5 L'lr(x, -y +X) = U_ Q U_l

We may derive (b) from (a) by using the time reversibility of the

differential eauations under (t,x,y) = (-t, X, -y), hence ¢ = ¢+ L

where p(x,Vy) = (X, -Y) .

Therefore we conclude from (3.7),

v Qul- L;r(x, -y +X) = L;r(x, (y+x) + N2 X

]

pt : P, .
Ly +NT X = U0 VT Ly’ e+ ™) v,

a) ppr= T+ ¥ ¥
(UE) N2 LI(O,p)}U,r,
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+
and after a similar calculation involving Q we conclude:

Theorem 5. For case (A), a > 0, the scattering map

¢ = d>+ o ¢>-l is given implicitly by

Q" ~ LN 2", 1@, 2~ o',

where both of the equivalences are brought about by the same unitary map,
V= UT LD S

+ -

The case a = 0 has been treated by Moser, but for completeness

we include short proofs in the spirit of the above arguments, and then

relate the results of the two cases. It was shown in [3], that if x,y

9H 9H
obey X, = o ¥, = = sl
i ay1 bl 8xi ¥

then as t =

i=1...,n, and if xi(0)<xi+l(0), I=l, ..

«) .
(3.8) x, =q t+p +O(t7), y, =~ q + O™, a

<
i i < 94

In fact, if we define the map ¢+ by ¢+(x,y) = (q, p), b Q- Q where
2 is the domain used in the definition of ¢+, then ¢+ is seen to be a
canonical bijection by arguments similar to ones given here. We are now

in a position to state:

Theorem 6, .;+ = ¢, where ¢ = ¢+ ° ¢

=1
Moreover ¢ = ¢+ °o¢ = ¢+ °p o ¢+ y 30 ¢+ is ‘conjugate’' to

the linear reflection p, and hence is an involution.

The equation .1,+ = & expresses that the scattering map ¢ relating
data at t = -« todata at t = +o for the system H , 1s precisely the
(o4

-20-
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scattering map U,,+ relating data at t = 0 todataat t = for the system
HO . Even the unitary maps in the two cases, which effect the matrix

transformations are the same, as they both are contained in the Lie subgroup

discussed in remark 2 of Section 2.

Proof. We now observe that

=1 .
M* = MY (@), M) = g2""(M+ - M) = X coshat - _____sxzhat ¥,

are isospectral matrices under the flow Ha, (see remark 1 of Section 2),
and for a - 0 we obtain L(x,y), X - t L(X,y) as isospectral matrices under
the flow induced by HO . Using (3.8), and the arguments of the Lax formalism

used previously, we conclude:

Q = lim L(x,y) ~ L(x(0), y(0)) ,
(3.9) t> o0 s

T(a, p) = L(-a, p) = lim (X - tL(X, ¥)) ~ X(0)

t—o0
where ~ denotes unitary equivalence.
Hence ‘L'+ (x(0), y(0)) = (g, p) is explicitly given by
i
X(0) ~ L (4, p), L(X(0), y(0)~Q ,

where both equivalences are effected by the same similarity transformation.
This completes the proof of the theorem, by comparing this with Theorem 5.

The map 4, linearizes the flow for the case « = 0, and is a alge-

braic, yet we have only an implicit description of it. However, we can find

some rational functions invariant under the action of cp+, similarly for ¢+ :

a2l




Theorem 7.
(i) Let & be the algebra of real valued rational functions of (%, Y)e Q,

generated by

tr[ f(X) - f(LI(x, y +ax))], (tr f(X)) - tr f(LQ(x, y +ax))) ,

where f is a polynomial. Then every member of ¥ is an invariant under
the action of q>+ :
(ii) Similarly let ;( be the algebra of real-valued rational functions

generated by
tr[£(X) - f(L(x, y))], (tr £(X)) - (tr f(L(x,y))) ,
f a polynomial. Then ;/ is a list of rational invariants of ‘b+

Proof. Let 7 be the algebra of matrix valued functions M(x,y) of (x,y),

T
generated by X = diag(xl, i g xn) and La(x, y + ax) . Note that any homo-

morphism of 7 is completely specified by its behavior on X, Lz(x, y +ax) ,

through extension. Now the map d>+(x, y) = (9, p) induces a mapping

1
(X, L (X,y +ax)) =~ (L(q, p +@q), Q) ,

explicitly given by (3.7a). By the above remark, this extends naturally to a

homomorphism $+: m—= m, which by (3.7a) is expressed by

(3.10) 8, (MO, ) = 27 06, ¥) M(x, v) (%, v)

Since ¢+(x, Y) = (4, P), we can consider functions of (x,y) as functions of

(a, p), which we shall do when we think of % as the range of the map $+ ,

P i




i.e., we shall regard $+(M(x, y)) as a function of (g, p) . We note that
trace is an invariant of ¢A+ . Hence defining ?(x, y) for any polynomial

f by the following line:

?(X, y) = tr[§(X) - f(La(X,y + ax))] = tr($+[f(X) . f(Lz(X,y + ax))))

A ~ T
= tr[£(8, (%) - £, (L (%, ¥ + ax))] = tr[f(L (q, P + @) £(Q)]

= tr[£(Q) - f(L (a, p+ aa)]=F(q,p) ,

we find ?(x, XY= ?(q, p) if (p+(X, V= (g, B), dae., () is aninvariant:

The other part of (i) is immediate, while (ii) is proven precisely as (i) .
We remark that an alternate derivation of Theorem 7 can be given,

whereby the invariance of the above quantities is seen to follow from the

‘invariance' of the Poisson bracket under canonical transformations, (see [14]).

+18
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4. Periodicity of Solutions for « Purely Imaginary and a Perturbation Result.

By Theorem 3,the homogeneous symmetric polynomials of degree v in

t
the X; are polynomials of degree v 1n e , for the system (A), a # 0.

On the other hand, the x, are strictly ordered, X <X, <... <X, due to

the singularity in the potential, hence the X, are uniquely given as algebraic

+ ot

functions of e (and the initial data). We thus conclude, verifying a

conjecture of Calogero's [10]:

Corollary 3. 2.

oH oH

If (x,y) obey k, = g = -

I e i=1...,n, « pure imaginary
oy, 2 4 y 2 ’
i i i xi

then the solutions are all periodic with (not necessarily primitive) period

ana-l.

Remark 1.
Since the motion is periodic, one expects 2n-1 integrals of the motion
to exist, which in this case would be rational in (x,y), and indeed they do.

Take for the first n integrals IJ[E] = tr Ej, and for the latter n-1 integrals,

+ %
Real[Ij(M ) Ii‘(M ), §=2,...,n. One sees they are algebraically in-

dependent by considering the x1 far apart, in which case the matrices are

nearly diagonal.

Remark 2.
A linearizing transformation, which is rational in one direction, alge-

( k%)

braic in the other direction, is given by T: (X, y)— {tr(L + aX)v }n G
v=

(zl, oy zn) =2, (X,y) e 2,  defined at the beginning of Section 2, and

«2d -




maps the flow into 'zj = ja'zj, (see [9]). The mapping T may not be in-
vertible, but for X "% large, L + aX is close to diag(xl + aYpy oo, Xt ay )
and thus by the implicit function theorem, knowledge of z enables

us to recover (x,y) from z and 2z . Hence 21’ Sheiets zn are algebraicly in-

dependent, complex valued rational functions of x,y .

Theorem 8.

For every sufficiently small C2 perturbation of HQ, there exists at

least n geometrically distinct periodic solutions on every energy surface

B> Ea = min Ha(x, ¥ .
(%, y)

While such results are easily derived in case the periodic solutions
of the unperturbed system are isolated, they are quite delicate for mani-
folds of periodic orbits which we have encountered. We shall use Theorem 1.
of {8], a beautiful theorem of A. Weinstein. Instead of stating
Theorem 1. 4 in its full generality, which requires much terminology [8],
we shall just list an immediate consequence of it, which will suffice for

our purpose, and then we shall verify that the necessary hypothesis are

satisfied in our situation.

Cor. of Thm. 1.4, [8]

Given: The Hamiltonian system H(e) =H+ePxv,8), (X,y) ina
0 0
neighborhood of the manifold given by the relation H( ) =B, and ‘VH =+ 0
on H(O) = E, P being C2 in its arguments, while for the value E, H(O) = E

is a manifold which is homotopic to the sphere, free of equilibria, of only

H(e) contains

periodic solutions. Then, for small ¢, the system with E =

at least n geometrically distinct periodic orbits.

-25-



Proof of Theorem 8.

We shall apply the corollary to the case H = Ha, o purely imaginary,
E>E =min H (x,y).
(o3 a
X,y
Thus we just have to check for E >E , the manifold HQ = E is
o

2n-
diffeomorphic (homotopic would suffice) to § £ l, with no fixed points.

Now
B v "ZVx2+z Mg
- — o y T o — / e ——— 9
a 2 4 7] a a 2 ~ i i (xi-xj)
and we see that Va(x) is strictly convex, since
2
2 (n; =)
_.d L 2 1Y
('r], Vxxr‘) = _dtz Va(g + tr]) = - (Z qi ) + 6 Z W >0 ,

for purely imaginary o . Thus Va(x) assumes a strict nondegenerate minimum
at some unique X where Va(xa) = Ea . We conclude Ha(x, y) is strictly
convex in (X,y) e £, and now consider the surface Ha =E> Ea, which by
the above contains no fixed points of the flow. The smooth surface Ha =F

is thus the boundary of the convex body Ha < E, and hence is diffeomorphic
to a sphere, the diffeomorphism being given by spherical projection through

an interior point of the body to some large fixed sphere. Clearly VHD #0

on H=E, for E>Ea.

Remark 2.
For n = 2,3, one can show that for energy surfaces near the equili-

-1
brium point, one has distinct orbits of primitive periods 2wia = - {l— el Ty =

26 s




and Gallavotti and Marchioro [7] conjectured this to be true for all n.
2

= 1 2
Thus Ha is quite different from the system H = — Y y., - 07 E xi2

2 & 7 £

for which all solutions have the same primitive period.
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5. Associated Flows.

The integrals found for the system Ha, case (A), were of the form
tr Ep, (see Theorem 2). More generally Hf = tr f(E), for any polynomial
f, gives rise to an integral. It is thus natural to consider Hf as the
Hamiltonian of a flow, which we call associated with HO =tr E . For
these more general flows tr Ep or also tr f(E) are, of course, again in-
tegrals since all these functions are in involution, and therefore E is
isospectrél under all flows Hf . We will determine another isospectral
matrix, which, however, depends explicitly on t. This will allow us,
as in the case of the system Ha,_ to describe the solutions of the system
Hf explicitly. The result is stated in Theorem 10 below.

We will determine these isospectral matrices, first for another flow,
and later translate the results to the Hf flow. For most of this section we
will study this other system, which is closely related to the Sutherland

system, (l.1), case (B), a = 0, and carry out the above plan for it. The

system to be considered now is given by the Hamiltonian;

n
(5.1) G(q,P)=‘12‘ Zl “’1"1’ +- Z{q _q} (@,p) e 2,
i=

2 defined in Section 2.

Notice that F(q, p) is, after the trivial canonical change of coordinates (2. 6)

transformed into the system given by (2.8), i.e. H of (1.1) case (B), a = 0.

a

For the matrix description of the flow we introduce:

| q; +4
(5.2)  {R(q, P}y, = jk(qu)+ (- jk{ _qk}

_28-
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+ . i v
R™ = R ¢ C where Cjk &5 (1 6jk)’ and therefore
%
=6 i(l -6 —_
I’ R (0 B) = 8y 0P + 100 -0 g
(5. 3) a,
L L e e v

We observe that R(q, p) = Z(&, -n), R* = Zi, with Z, Z* defined in (2.7),

and (q, p) - (£, n) defined in (2. 6) for qi >0, £=1.2,...,0 . Thus by the
discussion immediately following (2. 10), Rt, for the case qi >0,

+ 3% -
i=1,2,...,n, has simple spectrum. We note that by definition (R) =R

)

g Q= QR™, where Q = diag(dp, a,, - - - ,a,) - Thus it is clear that
£
R, R* have the same spectrum if Q is nonsingular, or equivalently that
+ -
tr(R )V = tr(R )v, for all v . Since the latter equation is rational in (g, p) ,

it holds for all (q,p)¢ @. Similarly QR = R'Q implies Q £*(R7) = (") Q

for f' a polynomial, and so
(5.4) [£(R))],, = [F(R)]
: i ly = My @
2. A Sl + -
If f isreal, then [Q f(R)] =[f(R)] Q =f(R)Q=Qf(R), i.e.,
Qf‘(R-) as well as f'(R+)Q are Hermitian, and so in particular qi[f‘(R-)]ii

as well as qi[f'(R+)]u, and [t"(R-)]ii = [t"(RJr)]ii are real. Thus we con-

clude

X ~sltentntr - temt +
i kM[f (R )]jk kj i{{f"(R)R ]jj (f'(R ;5 Rjj}
(5:.5)

+
=1 {[gR)]; - a;p,[F(R )1,,} .

1 J
with g(s) = sf'(s), is purely imaginary.
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An easy calculation shows that for F(q, p) defined in (5.1),

I =2 + 2 3
G(g,p) = tr(z=(R ) +cl) = tr(-_l-(R el e = _g(_n_l_)
2 2 8
Theorem 9,
s or oF
Under the flow a9, =352 P; = - 3z, with the Hamiltonian

st e qu

F= Ff = tr f(R+) = Lt f(R )

’

which is associated with G(q, p) of (5. 1), the symmetric polynomials in

qi = Gi(t) are rational in exponentials e)‘jt, j=1,...,n, provided qj >0 .

This is a consequence of the fact that the four matrices,

' + ' &
(5. 6) oM 2 Nlo whoga TR

undergo isospectral deformations as (q, p) " (a(t), p(t)) evolve under the

F flow.

Proof. These matrices satisfy an equation of the form L = (A, L], where

+ - sk +

A=A =A, A= -A, A" defined by the two equivalent relations

- 2. -Y\ . 4 - -
(A (0 P = 8 (- T AFRD] Re) +4(1-5,) [FR)], R
s#k
(5.7) < Sl % +
A(@ P) = 8 (- 5, lP®RY] L RO + -8 E (R R
9 s#k

The identity of A+, A" is an immediate consequence of (5.4), (5.3), while
ok -

A= -A follows from the fact that f(RJr)Q, hence Qf(R ) is Hermitian,

and from (5.5). To prove the matrices of (5. 6) are isospectral, it is suf-

ficient to prove
-30-




(5. 8) (@) R =[A, R'], (b) M"=[a", M7] ,

’

because taking the adjoint of (5. 8), the fact A = A* = -Ar implies a

statement analogous to (5.8) for R, M . We first prove (u), i.e.,
DFR+ - [A-, R+] . Using (5. 3), and defining [f'(R_)]” - tU' we
make a few preliminary calculations:
DF g = Bp [trf(R )] = tr[f(R ) - dp R = q tSS
S S
(5- 9) - v qj(tjs 'tsl) 9
DFps = -aq [trf(R )] = -pstSs + 1 L 5
s j#¥s (9_-q,)
5 )
i(l-6jk)
e] ¥ =0 6 e =
where we have used | . R ]jk jk(pj js) + 5 (qj 6ks . 6js)
S (9,-9,)
j ke
q.q
etii e £ L X _l_L X
Benes D e " B =SBt B T L T L
j#k (a,-q,)
j 'k
- + \ - + + -
= R - -
- (87 Ry = 2, (A Ry - Ry B
j#k
\ t q
. qktkj qj qk qj ik iy qj Kk i
o 77 q,-a.] |a,-a “ta -9, 1 | 6-a _i.—l Z(tjk'kj)’
j#k | - i 'k k j JeR j#k (qj-qk)
' e

and so we have shown DFRkk =

+ - 4+
Dp Ry = [A, Rl J#k.

[A, R ]kk’ and we now must show

iq
s e
We compute DFRjk = DF (qj_qk)
0 D W S e e U e e M W
" \@, -q) 2 s L e 4

s




hence )j _;t) = [A', R+]jk 2 DF Rj+k (defining Ajk by this equation)
4 G - ot . it - . o
B o (Ajs Rsk st Ask) DF Rjk
q,t iqg
by T 1 e e R i A j
RN L T R Y e
j ok )
t
e IR rqjtjs g 9s : qj : sk Is
. tqj-qs) (a -aq,) (a-a,) (ag-a,)
M~ tyy!
-1q, 9
'k ( )2
q - G
We now wish to show A =0, and for that we shall use the addition law,

AR

(qj - q) : 1 1

= + :
(qj - qs) (qs-qk) (qj-qs) (qs-qk)

inside the bracketed term. So we compute

(<t

e - - ij  kk

& gy =y Ry - Big) $ 000 B + Ly (@, -a,)
qS qS

ha sﬁzk s Tk [T =ay *Ta, -ap)

We compute the bracketed term separately:
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s s

-+
j-qs) (a.s - qk)

(ts - tox) (g

tjsqs 3 tskqs & tjsqs x tskqs
4,90 g -4) e -] (q - qa,)
S qj tjs 2 qstsk e le 4 qktjs 5 qs tsk
is (a 4] (a,-9,) Js  (a -q,) (qj -q )
: AJS " Ask - i(tjs R st bex)

Hence

n

Y, Ay - L A+ [ERY), RT),
S S
. R =
= 1[‘%“ Ajs L Ask] 1% Alg by (5.7)

So we just have to show i Z Aj— =0, i.e., that A" C =0, where C i
s
s
for all j,k . But since ; As

0=(CA) =A C, aswas tobe shown, concluding the proof of (5. 8a).

jk

, =0, forall k, we have CA” =0, and so

It remains to prove (5.8b) i.e., M =[A,M7].
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ot (R )). .

We first compute (M) = (Q

-tf'(R") i e-tf'(R‘)

(DpQ) e Q( y =

-tf'(R7) | of-r(Re R [, ot (R)

(DQe 4

where we have made use of DFR_ = [A",R"], which implies DFg(R-) ={K . aR)] .

On the other hand,

(7,77 = (87,007 R Y= qrar, ¢ HE )y 4 an, qpe R
and thus in order to have M~ = [A",M”], we must have
(5.10) DQ=Qf'(R) +[A, Q] .

In other words, we must have

Dpa; =9 ty,

[Q, A ]y (1-8y,) = (q; -ap) Ajl;(l-éjk) = q t,1-6,) ,

(5. 11)

but (5.11) is an immediate consequence of (5.9), (5.7), and (5.3) . We have
thus proven (5. 8), and the statement of the theorem concerning the rational

character of the solutions will be easily shown to follow from

(5.12) Q(t) = W(H) Q, etf'(Ro) w'l(t),

’

where W is a matrix satisfying WO =1, W = A"W

which we quickly verify. Indeed, as a consequence of (5. 8),

- e-tf'(R )

M =Q : i - wl

=WQ, W, R = WR, W

where the subscript shall now, and in the future indicate evaluation at t = 0,

and no subscript indicates evaluation at t . Hence

ALY




=l (R = (R = “(R” "
- Q = WQOW e (R ) = WQOW 1(Wetf (RO) W 1):WQO etf (RO) Y i
ok 2
We note that Olshanetsky and Perelomov  have proven (5.12) for f(s) = 5 SHbE
in slightly different coordinates.
The rational character of the solutions now follows, for by previous
- -
remarks, R~ has simple spectrum vl < v, B vn for 0<q1<q2<. aivs <qn X
and so by (5. 12),
n
v P fr(v )t
trQ -E qi-Pv(e SN
1=l
where Pv is a polynomial of degree v inthe n exponentials ef (Vs)t +
Remark 1.
In the language of remark 1 of Section 2, the matrix equations of
motion under the F flow may be expressedl as:
* T e +

(5.13) (a) 8R” =0, (b) 8Q = Qf'(R)=f'(R)Q, () 6M™ =0,

where the derivation & is defined by

(5. 14) 5(-) - [A, ()] +2,0)

ix
Remark 2. If we introduce xj, Y by qj =& J, Py = =iy, =1, Sy

a canonical transformation, then iRjk becomes

i "
Yy ¢ 3 (1 - By) coti=5—)

s2 in Theorem 9, then all solutions are bounded as a

1f we take f(s) = lz

consequence of
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O
e
<

n
2
), ¥,

= i

n

| =

-—trR
2

e
- |-

being a constant of the motion. To be more specific, we also observe that

- e orvaak
RO is diagonalizable, since Q = WQO etRo W, with W unitary,

ix %
Q = diag(e 1,..., eixn), and thus the matrix etRo is bounded for all real
- U . . iR .
t. Write e (0 in diagonalized form and observe that since e 0 is
bounded, R(-) has purely imaginary, not necessarily distinct eigenvalues
iv

TREEE ivn . From which we conclude, using (5.12), that

Q ~ 1D(V) 2 S e :

J

where D(v) = diag(vl, G ,vn), and the S''s are the column vectors of
S . Since necessarily, |det S| =1+# 0, we must have Sj # 0 forall j.

Thus all solutions of the flow

are quasi-periodic; and moreover, in special cases they will be periodic,
namely if the vj are integer multiples of a number u # 0.

The quasi-periodic character of the solutions would be a consequence
of a well known theorem of Arnold [6], if only we knew that the gradiants of
the n integrals of the compact system H = lEtr R2 were everywhere linearly

independent. Since we don't know this, it is conceivable that such phenomena

as exceptional points, hyperbolic tori, etc., occur, which is ruled out by the
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quasi-periodic behavior of the solutions. Of course, the rational character

of the solutions is a stronger assertion.

Corollary 1. Under the same hypothesis as Theorem 9, with f(s) replaced
y f + T ' .
by f(-as); i.e., H =tr f(-a(R")"), we have for the time evolution of

(a, p) = (q(t), p(t)), with the Hamiltonian Hf,

L (9,9 + ap) = W[—L {QO Mk "-leatf'(_aRO)L(q , P )}]W'1

Z

’

-atf'(-aR -1 e
Proof. Since QL(q, p) = R+, QL= WQO g ( QRO)W * 0 .

"(-aR’ -1
eatf( aRO) L(qopo) W | we get from La(q, p+aq) =

imply L(g,p) = W
1 =1
—(Q + @ "~ L(g, p)), by substituting the above expressions, the stated result.
N2
Now we return to our original family of systems Hf = tr(HE(x, ¥)) ,

and the plan of the beginning of this section. The tool is simply the canonical

transformation used to prove Theorem 2, which takes Ff into Hf .

Theorem 10.
. » _f : f :
M =8 HxW ¥,=-8_ H(xYy), 1=1 ...,n,
i y1 i xi

then the three matrices

atf'(E)

e T My Xl (HeaXye ;

E,

undergo an isospectral deformation with the same unitary generator for all
the deformations, and we have the time dependence of the solutions given
by

(5.15) Xty B (5™ Vop)t o 2FAEgity

> (YO + aXO) + (arX0 -Y

0 ,
where ~ indicates unitary equivalence.

.y




at

, we have for « >0 ,

Proof. By (3.5), (3.10), and Mi = (Y £ aX) ex
(5.16) $+: {Y+aX, -Y+aX}~ (N2 aQ, N2 LT(Q,P)} ,

$+ discussed briefly in the proof of Theorem 7. We recall that $+ acted
on the ring M of matrix valued functions of the variables (x,y) = ¢;1(q, B) .,
generated by Y + aX,Y - oX, by extending formula (5.16), so that for M(x,y)eNm ,

~

we have ¢ (M(x,y)) = U'l(x, YIM(X, y)U(X,y) . As a consequence of the defi-

ok

nition of $+, we found in (3. 6a)
¢, (X)=L (q,P taq) ,

and

(5.17) $+(E) & afBih. whete E = 12-(Y+aX)(Y-aX)

We also note that the mapping ¢+ is canonical with multiplier -1, so we
replace t by -t in the change of coordinates (g, p) - (x,y), to describe
evolution in time. Now we apply the inverse (<'$+).1 of the above transforma-

tion to derive from (5.16), (5.17) that

R <1 n el LI

- T
-1 atf'(-a(R )") 3
¥ RIC Q) -

ea(-t)f'(}:) L _1- (Y + aX) = 1 e-atf'(E)

N 2a N2a

(Y + aX)

otfi(-aR ) similar to Q, hence also to l—_(Y

N 2a
(Y + aX) is similar to (Y0 + axo), and thus is an

+aX)) .

But by Theorem 9, Q 0 4

This shows that e-atf (E)
isospectral matrix for the flow Hir . Formula (5.17) states E is similar to
-n(R')T, which by Theorem 9 is similar to -a(R(-))T, hence E is isospectral.

Formula (5. 15) then follows similarly from 3. 6(a) and Corollary 9.1.

L3 8

ecan il



At first Theorem 10 is valid only for a > 0, but as all the relations
involved are algebraic, we may take o arbitrary. The formula for X in
Theorem 10 yields the explicit solutions of the motion, and as in Theorem 9,
we conclude

+ atf (VS)

tr(L £ aX)’ = Pf (e o

for “HE= Hf, (see Theorem 9), the vi's distinct, fora > 0 .

Corollary 10.1. If H = Hf = tr f(E), the differential equations of motion,

written in matrix form are

(5.18) a) 8E=0, b) &X-= %[f'(E), X] +12[f'(}3), 4 g

with [A, D]+ = AD + DA, &(-) = DH(-) + at(-) - [B,(*)], where

1 [f'(E), Y]
a) B, = == {a[fE}]., +li—— #a ), 1Ek
b) SZ:I By, = 0
Proof. From Theorem 10 we have
g, M=o Py Loy, M= (Y < aR) gL

f g
are isospectral under the H flow, with one and the same unitary generator.
In other words,

sM¥=0, 6E=0

for some B(t), which depends on initial data, which for the moment we use

+
in the above definition of 6 . On the other hand, 6M = 0 implies
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4

6M = e'“tf'(n)é(w oaX) + o MH(E)

(~af (E)(Y + oX) = 0 5
from which we conclude

(5.20) 8(Y + aX) = af'(E) (Y + aX)
and similarly from &M~ = 0, it follows

(5.21) (Y - aX) = ~a(Y - eX) f'(E)
From (5.20), (5.21), we compute

6E

1"

6[%—(Y+aX)(Y- aX)] = 12(6(Y+ aX))(Y - aX) + ;—(Ym)()(a(y - aX))

% £'(E) (Y + aX)(Y - aX) - -Zoi(Y+aX)(Y-aX) f'(E) = o[f*(E), E] = 0

Formula (5.19a) follows upon subtraction of (5.20) from (5.21), upon writing
out the full expression for & .

We need only show that we can impose the normalization of (5.19b),
which as we saw in remark 2 of Section 2, which we shall be constantly
referring to, is equivalent to requiring that the unitary generator of the
matrix flow is contained in the Lie subgroup of the unitary group specified by
CU = C, i.e., with Lie algebra specified by CB = 0. From the proof of
Theorem 10, it follows that the unitary generator of the Hf flow can be
written as the product of the unitary generator of the Ff flow of Theorem 9,
and the U's occurring in the map $a of (5.16), as displayed in (3. 10).

By remark 2, the latter U's (see the discussion preceding (3. 5)) are con-
tained in the above Lie group. The U of the Ff flow has as its infinitesima!
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generator the A defined in (5.7), which clearly satisfies CA = 0, and thus
by remark 2, this U also is contained in the above Lie group. Thus the
unitary generator of the I-If flow can be written as the product of elements
in the above specified Lie group, and so by remark 2, we can impose the
normalization condition (5.19b). We also observe that the fact B(t) =

B(x(t), y(t)), i.e. that B is really a function on &, was not assumed

a priori.

Remark 3.

For H = Hf = tr f(Y), o =0, (5.18) reduces to
(5.22) §Y=0, 8X=f(0 ,

where 8(-) = Dp(-) + 3,(+) - [B,()].

We also note that (5.22), (5.19) imply

(5.23) 6Y = 0, &(X-tf'(Y)) =0 ,
[f'(V]
o jk
Be = (=% I#k,
(5. 24) ,
B= 0

f
and so by (5.23), the solutions of the H flow obey

' v o i v
X(t) ~ (X, + tf'(Y,)), hence ;; X, (1) = tr(X, +tf(Y ), v

1"
—
-
.
-
oo
-

the latter equation being a generalization of a result found in [9].
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6. Another Integrable System

In this section we discuss another integrable system, namely (1.1)
case (B), a # 0, formally analogous to case (A), but physically behaving
like a system of interacting particles under the influence of an additional
force acting from the right. We shall make this more precise in the discus-
sion of the scattering theory of the system. Moreover, we shall show the
solutions of the system to be rational in exponentials, by getting a fairly

explicit formula for the time evolution of the system.

Theorem 11. The Hamiltonian system
n 3 =X n x
1 2 i i
(6.1) Ha(x’Y):E Eyl+i— bl sinh ( j)+a Z‘el
i=1 I<i<j<n i=1
oH oH
is integrable. If Sci = -a—yg TR N E‘-’ y 1=21,...,n, fthen the matrix
i i

(6.2) W = Z+(x, Y)Z (X, Y) + aex, & = diag(e” S e™n)

o=

undergoes an isospectral deformation

DF W = [K, W], where Z*=Z¢12-C 8

a
with Z(x,y),C, K(x) as defined in (2.7), (2.9). Then the n algebraically
W AR
independent functions, Tj R = e rationalfin (yi, e i),

are in involution.

Proof. @ We shall actually prove this result for the system

q.+q

Y g=l+aY q, @mea,
i )

1 © 2. 1
F(a,P =3 ) (@P) +T ]
=1 1<i<j<n

A2




T ——

where g is not necessarily positive, and then perform the usual canonical

transformation,

X
(2.6) q,=e & qipi = ¥y in the component of £ with e >0

for all i . We then have

X
(6. 3) 2 (x,y) = R(q,p), € =Q, K(x) = Alg) ,

: 2
with R, Q, A of Theorem 9, f(s) = %S . We compute the matrix differ-

ential equations of motion, using the derivation &(-) = DF () - [A, ()],
a
namely:

(3) 5Q=3(QR +R'Q) ,
(6.4)

(b} 6R” = ~aQ

Equation (6.4a) is the same equation you would get for « = 0, namely

" . +
equation (5.13b), for f(s) = IE sz, since FO = lEtr(R Yo, QR =RIQ
and DF qi - ap Fa is independent of « . Since DF = DF sy 8p. 2
a i a 0 i i

while the off diagonal elements of R* are independent of P equation
(6.4b) follows from Theorem 9, in particular (5.13a), in the case

f(s) = s2 . Hence, by (6.4),

N

6(—12— R'R™ + oQ) = 12(6 RO +52- R'6R™ + abQ
@ - ot [ - +
=-7QR -ZRQ+3(QR +RQ =0,

and so 6w=0, i.e., DF W = [A, W] . The only thing left to prove, re-

o
turning to (X,y) coordinates, is that the (ter)'s are in involution, as

their algebraic independence is easily seen by considering the case, for
S




all i, of yi very large, xi - xi 1 very large, and -xi > 0 very large.

As in the proof of Theorem 2, due to the rational character of the integrals
W x '

tr in (yi e 1), it suffices to prove their involutive character in some

open neighborhood. We shall pick the neighborhood in the (x,y) space

where for a > 0, the solutions have the following asymptotic behavior:

-1
< < i
)\it + ﬁi + O(t ), )\i o, )\i )‘i+l for all i ,

x
1

(6.5) 5
Yy SKE+ORT), to g,

As in Lemma 2.1, such a neighborhood is easily found by converting the
differential equations of motion into an integral equation. Then for

X, -X

o i ik
(6.6) ij_ 6jyj+2(1-6jk) coth ( 5 )
we have
Mm 2= {26, +ie. )} ,
o Uik T ik
u'jk=-1 if k>j ’
=+l 1f k<j ,
=0 If k=7,

while limit eX = 0 . Thus the definition, (6.2), of W implies lim W(t)

t—om t— 00
exists and is a function of the )\i's . We then apply the same argument as
in Theorem 2 to verify that the tr Wp's are in involution. Also, as in

Theorem 2, since the integrals are rational in @, the statement of involution

for all o follows from the statement for o > 0 .
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We now explore this system (6.1) in a sequence of corollaries. Since
no collisions can occur we order the particles X, < Xl far de=is 2. -]

all % .

Corollary 1i.1. All solutions of the system Ha, for « >0, behave
asymptotically in the following manner;
PR T
i = i pi ( )7
(6.7) t-a®, K<k <... <A <0,

<2
y,=& N +0077)

g R 2
(6. 8) B, + B, =2 log(ar))

In words, the scattering behavior of the system is that of n de-
coupled particles, each interacting with the origin under the potential
X

e . The effect of the interaction is felt through the strict ordering of the

terminal velocities.

Proof. With no loss of generality, assume « =1. Then dropping the

subscript H = Ha, for o« =1, (given by (6.1)), we have

i o TRV o (e N
o R e T G
implies
i 1 x X -2
(6.9) X.= ¥ o(x-x)-e , &x) ==(coths)(sinh )
i g T 4 2 2

We first show that for all i, lim yi(t) exists and is nonpositive,
t—»m
for which we use only the following properties of ¢ :
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1
8

d'(x) €0, &(-x) = -$(x), x¢(x) >0, x#0, $(0)

From (6. 9) we have

X
X = d)(xl-xj) -el,
i>1

and we note ¢(xl-x ), -exl are < 0, while the energy relation, b. 1),

j

gives an upper bound on IX1I . Hence
o0 0 o0 [* o} x
!—— = e’ . o ;- “ . 5 -
2N2H > |f xldtl_-J %dt= | ¢(xjxl)dt+1 el dt |
-00 -00 j>1 - -00

X
and so ¢(x -xl)> 0, e 1 are integrable on (-%,®) . From this it follows

j
o0
xl(°0) = JO xl(t)dt + xl(O) exists. Now from (6.9) we have X, + ¢(xl-x2) =
¥ ‘b(xz-xj) - eXZ, where again we note ¢(x2-xj), -eXZ are <0 for

>2
j > 2 . By the previous step and the upper bound on (kj f, we have that

the left side of the above equation is integrable in t on (-%, ©), and thus
so is the right side. Since all terms on the right hand side of the equation
are of the same sign, each one of them is integrable, i.e. ¢(x2-xj) 5

J #2, e*2 are thus integiable, and so as before, S(Z(OO) exists. In-

ductively we climb our way upc i =n

, and conclude kj(w) exists for

all j, and exj, ¢(xi-xj) are integrable on (-, ) for all i #j . Setting

Xj(t)dt exists for all j, we must

j

<)\+< <\
=y S RAR D

o0
A :xj(cr), since x <xj+l’ and fwe

+
<0. We now wish to show )\l+<)\2<...<)\;<0,

but first we make some preliminary observations. We compute

X, =X X, -X

: : 2k )
8¢(xi-xj)—-[251nh (—3

-4 i o
) + 3sinh (Zj)](xl-x

j)’
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and so by the energy relation (6.1), d)(xi-xj) is bounded. We now claim
lim &(x -xj) = 0. To see that, we give wtthout proof the following easy

t —00

estimate, true for unbounded intervals I,
2 1 o
(6. 10) glel v Lol sopfl® for Bl BE

where

Ifll:f ltldt, [f] = sup|fl
I te I

We shall apply (6.10) by picking our interval I = (t,%), f(t) = ¢(xi-xj), and then

2
letting t - ©; we see |¢(xi-xj)|°t - 0, as was to be shown. Since
X, -X

S

f(t) - 0, t - o, we must have lim coth ( > ) = £ 1, depending on whether
s S #= % e
i >j or i<j. We are now ready to show )\1<)\2<...<xn<0.

First we show X\, <0 . By (6.6), (6.2), and the asymptotic behavior

X, -X J
) X
of yi’ coth ( 5 j), e”1,discussed above, it follows that
: % & : SR
(6.11) lim Z5(x(t), y(t) = T°, lim W(x(t), y(t) =5 T T
t—e 00 t-.oc

exists, where T* equals respectively a lower, upper triangular matrix,

with the X\ 's in the diagonal, and % i respectively in all the lower, upper

entries respectively. Hence

n n n
det lim W(t) = 12-(det T+)(det T) = IE(TT x:)- (IT x:) = l— ir (>\i+)Z '
1=l i

t— o0 1=1

but since W(t) undergoes an isospectral deformation in t, det W(0) =
det W(t) = det W(«) . On the other hand W = lZ(Z+)(Z" + aex, but since
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% 5
(Z+) =2, and as a >0, W is a positive definite Hermitian matrix,

which implies det W(») = det W(0) >0 . Thus by our evaluation of

+ +
det W(«), and since )‘j < 0, we have shown X\, <0 forall i.

j

We now show )\: <\ foran i, using an argument in [3]. From

i+1

(6. 9) we conclude

X X -
en-el+ (xn.-xl) >2 cb(xn-xl) 3

X X At -3 :
and since 0 <e n-¢€e1< c,e™n = O(t "), the function
-1
Iy = = > - > i > i
W n- %5t czt X, =¥ 0, with some constant c, >0, satisfies

$ > 2¢(xn-xl) > 2¢(y) >0 for t_>_t0 s

where we have made use of ¢'(x) <0, x¢(x) >0 . Thus llJ is monotonic
increasing and :p(w) = x; - )\;’2 0. If ;u(w) =10. then Cp(t) < 0, and
since >0, | would be bounded. This implies ¢(4) is bounded away

from zero, which in turn implies ((t) is unbounded. This contradiction

: . i + + + +
implies 0 < () = )\h - )\1 , and since )\1 = xz € os £ )\n’ there must
+ + : + +
exist an s such that )‘s < )\s+l . From this it will follow that )\1 <A

+ + +
)\s <\ n and proceeding inductively we can conclude that all the \;i's
are different. We show )\l o xs assuming s >1, the other case being proven

+ +
in the same way. nce > > e et e SOttt 58,
Y Si )\j )\s,j S, j g = i 3 ’ — J

we have by (6.9) and )\: < 0, that

2

d », -3
—(x %)= ) dx -x)+ Y d(x,-%) -0t )
dtz - j<s L 51 ]

> 26(x X)) - o(t™?)

L




Thus we are in precisely the same position with xs-xl as we were in

before with X =X and so conclude )‘s > )\1 . We have thus shown
+ + + , : -
Xl < xz Hoie 2= )\n < 0, and similarly for t - -, i.e., if xi(-w) = xi .
wa find % 2% .. % 50,
1 2 n

Using arguments similar to those of Lemma 2.1, we easily show

(6.12) xi(t) = )\itt +[3:: + O(t'l), t—-xo0o forall i
=7
y(t) = AT + 0™,
¥ .
and so we must prove xi = -)\i . We first prove this fact for all |)\:|

very large. In that case by (6.1l1), the spectrum of 2W is 'relatively' close to
+
()\1+)2, (\2)2, s ()\;)2, and by the implicit function theorem there exists

a C' diffeomorphism 7, completely determined by (6.11) and defined by

-r((xl*)z,(xZ)z, Sak (x;)z)z (B Pys =+ s Ppds P> Py 3 ooy >p , Where

(pl, Pps v oo pn) equals the spectrum of W . For the domain N of t, we

fix a point defined by ()\:)2 i (i+)M, i=1,2,...,n, M sufficiently

large and positive, and let N = {((x:)z,...,u;)"‘)l l(x:)z AR

p(M) <1, and being picked sufficiently small to ensure 1 is a diffeomorphism.
On the other hand, in the above neighborhood, since the spectrum of W

is very large, by (6.11) in the case of x', we know that the (ki-)2 ,

i=1,...,n, must be very large and 'relatively' close to the spectrum of W. In
fact, using the implicit function theorem once again, and (6.1l), in the

case of A\, noting that the form of (6.11) guarantees that the spectrum of

’

¢ +
W is unchanged upon the inversion )\i e -\i, i=12,...,n, we must

» wd- i =l -2
have T((\l) ’ ()\Z) ,...,()\n) ) = (p],. ..,pn) . While by the uniqueness
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clause in the implicit function theorem, this implies (xi,

*.
and hence )\i = -xi

s

We~now wish to prove A = _x;

observe that (6.12), as in Lemma 2.1, enables you to

diffeomorphism of ¢, <b+,

++ +
¢ (x,¥)=(A",B"), A

and similarly one defines &(x,y) = (A",8") .

defined by

L
S PP N §

for all (e, w) e 2

+ +
n

')': (‘)’17"'

We can then define

For that we

')+
)i’n) ’

b =} o
i

B -
a canonical diffeomorphism of @, by ¢(X ,B ) =(\ ,;3+), which, in

particular, is continuous.

(6.13) W(x») = IE T+(:t o) T (£%) =

and so the coefficients ap
- k +
= 5‘ Z a (X*) depend on \, or

- +
the map X = )\

ak(x-) = ak(>\+), k=1...,n. On the other hand, we have shown

Now by (6.11),

is given by the n

of the characteristic polynomial,

only.

rxli T e

NN

+
n—J

Thus since W(+x) ~ W(-)

algebraically independent relations

k

20 =

construct a canonical

-]
@

det(zI-W(x»))

’

+
k ’

for all k in some neighborhood, and thus by the continuity of ¢, and the

identity theorem for analytic functions,

for all .

To prove (6. 8),

Moser's[15], that the maps (x,y)- (B

&
y A7)

»5]a

we observe once again, applying an argument of

are canonical, and hence

’




n + & n
Y dp. ~da =Y
yan) 1 J
i=1 i=1 i

which implies, along with the self explanatory definition of u ,

= v i o = = r = -
du d(%(ﬂi + ﬁi)d)\i) 0, N\ =N N
By the Poincare Lemma for the convex domain €, we find u = dsS(\),

and so

+ - _95(N\)
Py * B =55

i

n
We first show S = Z S()\i), and then we evaluate S explicitly.
i=1
To see S has the above decomposition, we note that the one particle

system with
1 2 X
H(x,y) = 5 y +e |,

has for its most general solution

(6.14) X = log[Z)\2 sechZ(Xt+ oL k>0
and hence

+ -1
(6.15) X(t) =F 2A\t + B + Ot ), t—= x> ,

where ;3* =(log(2)\2) 7 26 + 2log2) . Thus if we have the n-particle

system with

gi=}

(6. 16) = ) (%v +et)

R

—
I
—

we would have

B




,\j cosh(xiuéi)
(6.17) T R [:xi cosh (A T 5},):] ’

where the notation obviously comes from (6.14). Now fixing \l > \2 >

- 61 =m >0, sufficiently large, for all i, we

2N if &
e D

conclude from (6.17) that le(t) > Xi(t) forall i, t. Ifwelet m- »
or what comes to the same thing p;l - ﬁ: - o for all i then

inf (x, .-x,) - . We are now in a position to perform a scattering

it i+l
experiment with the system HQ . Namely, to evaluate S, since it only

depends on the terminal velocities, we may choose a set of scattering

data for a fixed set of final velocities, i.e.,

X (1) = 2Nt + By + o™y, t=w ,

+ s i .
where Bi+1 - Bi =m, m large. Then by the above considerations, the

system Ha decouples as m - 0, hence

(6.18) — (.3: + pi' = 2109(2)\1)2 + O(m-l)

9 + -
But since EXS" (Xl, Sy )\n) does not depend on m, we must have ﬁi BiE R
i
2
2 log(2 xi) . Lifting the requirement that « =1, and returning to the nota-

= 2
tion of the theorem, we find ﬁ: % A 2 log(ah ) .

Corollary 11.2.  The explicit solution of the equations of motion for a # 0

are given by

(6.19) ex~ (Za-l'pp-l)', p = AleAttl\2 v A3 e_At A4 :
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where ~ indicates similarity equivalence. Here the A 's are constant
i

matrices described in the proof, and in case o >0, we have

(6.20) 2A =diag(-N, =X, .oy A ),

with xi being the same as in (6.7). Thus the symmetric polynomials of

X + 1\t
e i, for « >0, arerational in e™2 ") ¢ l,....0 . Moreover, if
we define the 2n X 2n matrices J, ﬁ by
Bl ot A

(6. 21) el i ahis ol ;

= Wy 0 el
where Cjk = {(1- 5jk)’ and W(x,y), K(x) as defined in (6.2), (6. 3), then
(6.22) DH ¥= 800 0,

a

i.e., ] is isospectral. For a >0, the spectrum of J is é—)\i 5

i=1,...,n, butin any case, the spectrum occurs in & pairs. Finally A

satisfies the quadratic matrix equations,

(6.23) WaOnagh” |

where

< -1 o -1 .,
W=V, WV, C= v, CV*, respectively ,

for some nonsingular n by n matrices V*

X
Proof. ~We first compute the time dependence of e, i.e. (6.19), and for
that we go over to (ql, EETL SP) PRRRY pn) coordinates, as in the proof
of Theorem 11, using the same notation as in that proof. We define the

%
matrices q, r by
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= | a
(6.24) a=u"Qu, *-u Rty ,

where U is a matrix satisfying U(0) = I, U=AU, A asin (6.3). This
matrix g is not to be confused with the coordinates (ql, oy qn) . The

equations (6. 4) are respectively equivalent to (see remark | of Section 2),

: + = +
grstgr =g, ‘since’ gr =r q

(6.25)

= . -1
Since R' - R =C, [C,A]=0, U= AU, it followsthat U 'CU =C, and

so we have

That W is isospectral is equivalent to (see remark 1 of Section 2)

e
rr +aq=W

N

0 b

where the subscript shall now, and for the remainder of this section, indicate

evaluation at t = 0 . By the above we have

| R
E(r +C)yr -r =WO, 1. e.

(6.26) -;-(r')2 -t” = Wiyt %-Cr-

Defining p as the solution of the linear differential equation,

3% R

| il ,
(6.27) r = -2pp , p(0) =1 (hence p(0) = -
and substituting this into (6.26), we compute
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| RSENOEE R| s (R RN, SR fac s o
5(-2pp )(-2pp ') - (-2Pp +2Pp pp ):WO—ZC(-&pp X »

which implies

1

- 1 -
p —zWop’rECP

Defining the n by 2n matrix P = (g), we conclude

It
(6.28) P =] P, hence PzeoP

0 (6%

with ] defined in the statement of this corollary.
Recalling Q = diag(ql, ey qn) = diag(exl, 0o exn) = ex, see (6. 3),

we compute, using (6.24), (6.25), and (6.27),

1

-1 X - -1.- - =l 1. 1.
(6.29) U eti=1U 1QU:q: -a lr = -a l(-pr l) = 2a l(ppl), hence

- e [
U leXU:Zar (pp 1)

Assuming for the moment the statement of the corollary concerning the spectrum

of J, we may write, using (6. 28),

3 e |
(b)_P-e PO-Ee (E PO),

with A = diag(A, -A), A an n Xn matrix which takes, for a >0, the form
given in (6.20), and E a matrix which block diagonalizes IO . This expression

for P, in conjunction with the above expression for UeXU’I yields (6.19).

’

We now analyze the spectrum of J, but first we must verify (6.22),

i.e. Dy ] = [E,I] . We compute
a
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while by (6. 21),

®,1) =3 -L :
(KW, [&Ka| [Kw], o

and thus by Theorem 11, (6.22) is verified.

We now assume a« >0, returning to (x,y) coordinates, and proceed

to prove that the spectrum of ] (which by (é.22) is constant along an

1

orbit) is =+ 3 N\, i=1...,n. Now, since J(t) is an isospectral matrix,

1,

it is sufficient to prove

J(o9) = lim J(t) =

t— 00

(see (6.13)), has the above spectrum. Defining the matrices A, \, by

ks ke

A, = A= diag()\l, A

jk_ ’ ")\n) ' ]

29
U i kK 5>)

(6.13) implies

™ - (MA)(MA’"), Ced~B
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Thus to prove that the spectrum of J(©) is & ‘12— )‘i’ k=1, i..,n0, 1f {8

sufficient to prove the seemingly stronger, purely algebraic statement.

Lemma 11. 3. If

0 I

(6.30) M ()) = ’ 2
€

* 1 *
4—(>\+ eA)(AteA ), 5 e(A-Aa)

where \ - diag()\l, a5 Xn), the spectrum of Me(\) is independent of ¢ ,

and in particular the spectrum of MO(X) agrees with the spectrum of

M) (N) = J(=) .

Proof. For the proof, which need only be given for the case )\1 < xz <

R xn <0, we employ the asymptotic description of the orbits of H
a

’

formula (6.7). First we make some preliminary observations. Defining

<4
=Mep=e" A, B=z|B © |,
9, &l
we compute
(6. 31) eBMl()\)B-l =M_(\), ie., eM; (\) ~ M_(\)

For the rest of the proof of Lemma 11. 3, we fix \', )\i < )"2 20

< xr'] < 0. We then pick 61 = 61()\') so that

; : ; i
(6. 32) IMe(x)-Mo(x)l <z, |e|<61<62<1

’

with 62 = 62()\') to be determined in the course of the discussion, and

[Al = sup (E IAU [y . We now fix e for the remainder of this lemma,
i=l,...,n j=1

¢ only having the property |€| < 61
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Observe that for any matrix of the form My(A) +8, S a small

matrix with |S| < 61, we may find a matrix D such that

(
-1 . ; + + - 1
I)(MOM)+Sn):dmmpr By Myttt g )
(6. 33) é 2
e + 1
= bl B 2 M EOEN, i=h...,n
- o, M

In addition, D may be taken to be of the form

Note that all the O's which appear now, and for the rest of the discussion,

depend only on \'.

We proceed with the proof of Lemma 11. 3, having fixed \', and then
€, and therefore \ = e-l)\', as previously discussed. We first consider a
particular orbit with asymptotic behavior given by (6.7), and any choice of
P = (pl, P .ﬁn) . We then pick the origin of the orbit, i.e., replacing t by

t+t, with t chosen so large that

6
2
’E‘ ’

i}

JotX(), ¥(1) = M|\ + 8 Isll <

l’
(6. 35)

Zo(x(t), y(t) = (A +a7) + 5, |s,] <1
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Since by (6.7),

- *
lim  J(x(t), y(1)) = M, (N, lim 2 (x(t), y(t)) = x+a

such a t can always be chosen.

With the above chosen orbit, we rescale time, t- ¢ t=1t', and
so in (6.7), the terminal velocities X are replaced by e\ = X' . In what
follows, we shall indicate the transformed quantities by primed letters.

We compute

p - — o~ e pI - I’ 0
(6' 36) (é) =P BP = P' = (bu)! B [0’ CI] ’

while

P= T B eBP = (eBIOB-l)(BP) 2

which may be conveniently written as

dP' L} ‘ ] s -1
(6. 37) o Io = eBIoB

dar* " g
Using (6. 35), (6.31), we compute

;P .1~ %]
Jg = eBIOB = eB(Ml(\) + SI)B
' -l )
=M€(X)+eBSlB ’MO()‘)+SK+S4 y

with

- ' ' . -1
S, = M_(\) - M_(\') S, = ¢BS B

. i -1 1
Since by (6. 32), |s|<l, |S4|5IB' ISII |eB |5|81l<36z .
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and so, again by (6. 32), we find

(6. 38) I = Mg(\) + 8, Is] <b,

We are now in a position to use (6. 33), as (6. 37) implies, with D de-

fined in (6. 33),
o4

Pzel P =D {exp[(D'1 ]bD)t]} (D'l P

5" %

0

and so by (6. 38) applied to (6. 33), (6.34), we find

d. . a
(6.39) P = 11’ 12 e 5 B ; % Pby

le’dZZ g ,e& 2

and so conclude

(6.40) pl=d.e pl+d e P,

We shall ncw come to the determination of 62 = 62(>\'), and then we

will finish the proof of this lemma. By (6. 36), (6.27),
el _ T, 0 I » I
e [0, eJ [ 25]' g
2 0
and so by (6. 39), (6. 34), we find

e w ko B oot £ -
Py = (DD + (M) (-5 Zg) +O(8,) (I -5 2,

From (6. 35) we have

-1 - 1 .-1,-
(-3 Z) =3

Zo) = 2 0

e B

while
-6)-




RN TR £
1-3%;=1-2(A+4 +8)s1l-2X-24 -5 8

0

o m

Since by (6. 32), (6.35), le| < 62, ISZI <1, we conclude from the

above

(6. 41 pp=1+8,, with Issl <o(8,) ,
a(b):LIX‘I-lb(nH)i»O(b )(1+1—|x'l+l—6(n+1))
- LS s 2 2 i e e

We now choose 62 = 62(>\'), so that 0 < 62 <1, 0(62) <1, and in addition
62 is in the domain of validity of the estimates in (6. 33), (6. 34). The
remark concerning the \' dependence of O ensures 62 = 62()\') :

We now compute the positive spectrum of Ib . Recalling q = U-1 eXU g

(see (6.29), and substituting t — t'y, N-—= \', in the asymptotic description

of the orbit, (6.7), we conclude, using (6. 24)

U(t) = U + O((t'Thy, lim UGty = U@

t' - o0
qi — exi = eBi e Xit(l + O((tl)-l))
; ™ =]
a, = v, e¥i = N Pt e M1 + o)™

1=l ..un,  and so
-1, -1 I -l
(6.42) a q=[U (=) (diag(ry, .. -, )\n)) Ue)] « (1 +0¢t'y ) ,

where these O's depend on our fixed initial data. On the other hand, using

(6.40), and the nonsingularity of the matrices d P’ pl, implicit in (6. 34), (6. 41)

1
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respectively, and since by (6.25), (6.27), q-liq =r = -Z'pp-l, we conclude

-1, TR -1
lim q g = lim (-2pp1)=-2d11p+d :

t'— 00 t'— 0 1
This expression coupled with (6.42) yields

=1 h ' 2 + -1
U (%o)(diag(N\;, ..., )\n)) U(wo) = -2 d11 v d11 .

+
We thus find that the positive eigenvalues of ]6, by = -lz- X'i .
i=1,...,n, with no error tem 0(62), as in (6. 33). Thus p: -
i=1,...,n, is contained in the spectrum of, (see 6. 37),

-1 -1
Jo = €BJ B ~ €BJ()B , J(9 = lim J(x(t), y(t),

t— 00
where ~ denotes similarity equivalence, since J(x(t), y(t)) undergoes
an isospectral deformation by (6.22). By (6.7), J(®) = Ml()\), and thus by
(6. 31),
-1
[P )\ = A\
IO eBMl( )B Me( )
We have thus shown for arbitrary ¢ satisfying |e| < 61 = 61()\'), that the
1
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